S3 Vector Bucket для демократизации RAG
#AI #BaumSWARM #BaumTechPulse #RAG #S3 #VectorBucket #АгентныйИИ
3 минуты

S3 Vector Bucket для демократизации RAG

В Amazon S3 появился новый тип «vector bucket» (часть превью-функции S3 Vectors). Он хранит и индексирует эмбеддинги так же дёшево и надёжно, как обычные объекты S3, при этом предоставляет быстрый поиск и отдельный API.

По расчётам AWS, перенос «холодных» векторов из постоянно работающей базы OpenSearch в S3 снижает совокупные расходы на хранение и поиск до 90 % — именно то, чего не хватало массовым RAG-системам, где объём эмбеддингов растёт быстрее, чем сами модели. (Amazon Web Services, Blocks and Files)

Vector Bucket: как это устроено

  • Емкость и масштаб. В одном vector-bucket можно держать до 10 000 индексов, каждый — десятки миллионов векторов. (Amazon Web Services)
  • Метаданные и фильтры. К каждому вектору добавляются пары «ключ-значение»; по ним можно мгновенно отфильтровать выдачу (дата, языковая версия, владелец и т. д.). (Blocks and Files, AWS Documentation)
  • Кейсы. От медицинских снимков и дублирующих видео до enterprise-поиска — там, где нужно быстро найти «семантически похожие» объекты в петабайтах данных. (AWS Documentation)

Retrieval-Augmented Generation (RAG) добавляет внешние знания к LLM, но требует постоянного пополнения и переиндексации эмбеддингов. (Amazon Web Services)

  1. Дешёвое долговременное хранение — S3 Vectors снимает главный вопрос стоимости, особенно для «архивных» датасетов, которые нужны модели лишь иногда. (Blocks and Files)
  2. Качество ответов — исследования уже показывают, что RAG-системы должны уметь бороться с амбивалентными или конфликтными источниками (см. MADAM-RAG).
  3. Мультимодальность — свежие практики предлагают хранить единый эмбеддинг для текста + картинок и строить truly-multimodal RAG, что опять-таки требует огромных, но недорогих векторных хранилищ.

Экспертное мнение Baum

Мы в Baum выстраиваем сотрудничество с ведущими российскими разработчиками LLM для RAG в продукте Swarm, чтобы построить «внутренние источники знаний” компаний на собственных данных.

Что это значит для отрасли

Vector Buckets делают векторизацию «коммодити»-услугой: вместо собственных кластеров Milvus/Faiss теперь достаточно S3. Это удешевляет вход в RAG-проекты, а значит, ускорит внедрение корпоративных ассистентов, поисковых движков и агентных ИИ-систем. Следующий логичный шаг — появление «умных» объектных сторажей, где векторный поиск, версионирование и AI-функции войдут в ядро, а не будут внешними аддонами. И именно над такой гибридной архитектурой мы в Baum уже работаем.

Андрей Гантимуров
andrey_gantimurov@baum.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *
Author
Посетитель сайта

Добавить комментарий

Комментариев пока нет

Другие статьи, которые могут быть полезными

3316
53
Введение Память в последние годы становится ключевым элементом инфраструктуры, сдерживающим повышение производительности и эффективности ИТ-систем. Среди причин, обуславливающих это, можно назвать несколько. Во-первых, увеличивающийся разрыв между производительностью CPU и пропускной...
3316
53
Список изменений в релизе 6.0.1 Добавленный функционал доработана поддержка SAS мультипассинга для дисковых полок добавлена синхронная репликация по протоколу FC для быстрых пулов добавлена глубокая очистка накопителей (гарантированное удаление информации)...
2364
5
Версионность файлов – удобный инструмент, позволяющий работать со снимками сетевой папки, и, как следствие этого, иметь доступ к предыдущим версиям файлов из интерфейса клиентской системы. Эту возможность предоставляет расширение протокола...
2008
1